Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra. | \(h_{3}\) | \(g_{14}+3/4g_{1}\) | \(g_{4}\) | \(g_{7}\) | \(g_{10}\) | \(g_{11}\) | \(g_{13}\) | \(g_{16}\) |
weight | \(0\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{2}\) | \(2\omega_{2}\) | \(3\omega_{1}+\omega_{2}\) | \(3\omega_{1}+\omega_{2}\) | \(6\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(2\omega_{1}\) | \(2\omega_{2}-2\psi\) | \(2\omega_{2}\) | \(2\omega_{2}+2\psi\) | \(3\omega_{1}+\omega_{2}-\psi\) | \(3\omega_{1}+\omega_{2}+\psi\) | \(6\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{2}-2\psi} \) → (0, 2, -2) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0) | \(\displaystyle V_{2\omega_{2}+2\psi} \) → (0, 2, 2) | \(\displaystyle V_{3\omega_{1}+\omega_{2}-\psi} \) → (3, 1, -1) | \(\displaystyle V_{3\omega_{1}+\omega_{2}+\psi} \) → (3, 1, 1) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | ||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
| Semisimple subalgebra component.
|
| Semisimple subalgebra component.
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(3\omega_{1}+\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-3\omega_{1}-\omega_{2}\) | \(3\omega_{1}+\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-3\omega_{1}-\omega_{2}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}-2\psi\) \(-2\psi\) \(-2\omega_{2}-2\psi\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{2}+2\psi\) \(2\psi\) \(-2\omega_{2}+2\psi\) | \(3\omega_{1}+\omega_{2}-\psi\) \(\omega_{1}+\omega_{2}-\psi\) \(3\omega_{1}-\omega_{2}-\psi\) \(-\omega_{1}+\omega_{2}-\psi\) \(\omega_{1}-\omega_{2}-\psi\) \(-3\omega_{1}+\omega_{2}-\psi\) \(-\omega_{1}-\omega_{2}-\psi\) \(-3\omega_{1}-\omega_{2}-\psi\) | \(3\omega_{1}+\omega_{2}+\psi\) \(\omega_{1}+\omega_{2}+\psi\) \(3\omega_{1}-\omega_{2}+\psi\) \(-\omega_{1}+\omega_{2}+\psi\) \(\omega_{1}-\omega_{2}+\psi\) \(-3\omega_{1}+\omega_{2}+\psi\) \(-\omega_{1}-\omega_{2}+\psi\) \(-3\omega_{1}-\omega_{2}+\psi\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}-2\psi}\oplus M_{-2\psi}\oplus M_{-2\omega_{2}-2\psi}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}+2\psi}\oplus M_{2\psi}\oplus M_{-2\omega_{2}+2\psi}\) | \(\displaystyle M_{3\omega_{1}+\omega_{2}-\psi}\oplus M_{\omega_{1}+\omega_{2}-\psi}\oplus M_{3\omega_{1}-\omega_{2}-\psi}\oplus M_{-\omega_{1}+\omega_{2}-\psi} \oplus M_{\omega_{1}-\omega_{2}-\psi}\oplus M_{-3\omega_{1}+\omega_{2}-\psi}\oplus M_{-\omega_{1}-\omega_{2}-\psi}\oplus M_{-3\omega_{1}-\omega_{2}-\psi}\) | \(\displaystyle M_{3\omega_{1}+\omega_{2}+\psi}\oplus M_{\omega_{1}+\omega_{2}+\psi}\oplus M_{3\omega_{1}-\omega_{2}+\psi}\oplus M_{-\omega_{1}+\omega_{2}+\psi} \oplus M_{\omega_{1}-\omega_{2}+\psi}\oplus M_{-3\omega_{1}+\omega_{2}+\psi}\oplus M_{-\omega_{1}-\omega_{2}+\psi}\oplus M_{-3\omega_{1}-\omega_{2}+\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}-2\psi}\oplus M_{-2\psi}\oplus M_{-2\omega_{2}-2\psi}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}+2\psi}\oplus M_{2\psi}\oplus M_{-2\omega_{2}+2\psi}\) | \(\displaystyle M_{3\omega_{1}+\omega_{2}-\psi}\oplus M_{\omega_{1}+\omega_{2}-\psi}\oplus M_{3\omega_{1}-\omega_{2}-\psi}\oplus M_{-\omega_{1}+\omega_{2}-\psi} \oplus M_{\omega_{1}-\omega_{2}-\psi}\oplus M_{-3\omega_{1}+\omega_{2}-\psi}\oplus M_{-\omega_{1}-\omega_{2}-\psi}\oplus M_{-3\omega_{1}-\omega_{2}-\psi}\) | \(\displaystyle M_{3\omega_{1}+\omega_{2}+\psi}\oplus M_{\omega_{1}+\omega_{2}+\psi}\oplus M_{3\omega_{1}-\omega_{2}+\psi}\oplus M_{-\omega_{1}+\omega_{2}+\psi} \oplus M_{\omega_{1}-\omega_{2}+\psi}\oplus M_{-3\omega_{1}+\omega_{2}+\psi}\oplus M_{-\omega_{1}-\omega_{2}+\psi}\oplus M_{-3\omega_{1}-\omega_{2}+\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) |